A Formula for Kergin Interpolation in R^{k}

Chardes A. Micchelli
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
AND
Pierre Milman
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Communicated by Carl de Boor

Received February 19, 1979
dedicated to the memory of p. turán

In this note we give a constructive proof of the existence of the map introduced by Kergin (J. Approximation Theory 29 (1980), 278-293).
Let S^{n} denote the n-simplex

$$
\left\{\left(v_{0}, \ldots, v_{n}\right): v_{j} \geqslant 0, \sum_{j=0}^{n} v_{j}=1\right\}
$$

Given vectors $x^{0}, \ldots, x^{n} \in R^{k}$, consider the linear functional

$$
\int_{\left[x^{0}, \ldots, \epsilon^{n}\right]} f=\int_{S^{n}} f\left(v_{0} x^{0}+\cdots+v_{n} x^{n}\right) d v_{1} \cdots d v_{n} .
$$

In particular, $\int_{\left[x^{0}\right]} f=f\left(x^{0}\right)$, while $\int_{\left[x^{0}, x^{1}\right]} f$ is the line integral of f over the segment $\left[x^{0}, x^{1}\right]$ and so on. We denote the directional derivative of f in the direction $y \in R^{k}$ by $D_{y} f$. Finally, we introduce a map $\pi_{m}: C^{m}\left(R^{k}\right) \rightarrow P_{m}\left(R^{k}\right)$, polynomials of total degree $\leqslant m$, by setting

$$
\pi_{m} f(x)=\int_{\left[x^{0} \ldots, \ldots, x^{m}\right]} D_{x-x^{0}} \cdots D_{x-x^{m-1}} f .
$$

This map is independent of the order of the points x^{0}, \ldots, x^{m}. To see this we let $f(x)=g(\lambda \cdot x), g \in C^{m}\left(R^{1}\right), \lambda \in R^{k}$ then

$$
\pi_{m} f(x)=\lambda \cdot\left(x-x^{0}\right) \cdots \lambda \cdot\left(x-x^{m}\right) \int_{\left[\lambda \cdot x^{0}, \ldots, \lambda \cdot x^{m}\right]} g^{(m)},
$$

which by the Hermite-Gennochi formula equals

$$
\lambda \cdot\left(x-x^{0}\right) \cdots \lambda \cdot\left(x-x^{m}\right)\left[\lambda \cdot x^{0}, \ldots, \lambda \cdot x^{m}\right] g,
$$

where the expression $\left[x_{0}, \ldots, x_{m}\right] g$ denotes the divided difference of g at x_{0}, \ldots, x_{m}.

Now it is well known that the divided difference is a symmetric function of its arguments and, since the functions $g(\lambda \cdot x), \lambda \in R^{k}, g \in C^{m}\left(R^{1}\right)$ are dense in $C^{m}\left(R^{k}\right)$, the symmetry of $\pi_{m} f$ in its arguments follows.

When we enumerate the maps $\pi_{0}, \pi_{1}, \ldots, \pi_{n}$ based on $\left\{x^{0}, \ldots, x^{n}\right\}$, we will always assume they are constructed from nested sets of the form $\left\{x^{0}\right\} \subseteq$ $\left\{x^{0}, x^{1}\right\} \subseteq \cdots \subseteq\left\{x^{0}, \ldots, x^{n}\right\}$, respectively, In this case we have

Theorem 1.

$$
\begin{aligned}
\pi_{r} \pi_{s} & =0, & & r \neq s \\
& =\pi_{r}, & & r=s .
\end{aligned}
$$

Proof. Again, for $f(x)=g(\lambda \cdot x)$ we have $\pi_{s} f(x)=\lambda \cdot\left(x-x^{0}\right) \cdots \lambda$. $\left(x-x^{s-1}\right)\left[\lambda \cdot x^{0}, \ldots, \lambda \cdot x^{s-1}\right] g$. Now, if $r>s, \pi_{r} \pi_{s} f$ is zero because π_{r} annihilates polynomials of degree $<r$. On the other hand, for $r<s$ we see that $\pi_{s} f(x)=p(\lambda \cdot x)\left[\lambda \cdot x^{0}, \ldots, \lambda \cdot x^{s-1}\right] g$, where $p(t)=\left(t-\lambda \cdot x^{0}\right) \cdots$ $\left(t-\lambda \cdot x^{s-1}\right)$. Thus $\pi_{r} \pi_{s} f(x)=\lambda \cdot\left(x-x^{0}\right) \cdots \lambda \cdot\left(x-x^{r-1}\right)\left[\lambda \cdot x^{0}, \ldots\right.$, $\left.\lambda \cdot x^{s-1}\right] g\left[\lambda \cdot x^{0}, \ldots, \lambda \cdot x^{r}\right] p=0$, and finally for $r=s$ we have $\left[\lambda \cdot x^{0}, \ldots\right.$, $\left.\lambda \cdot x^{r}\right] p=1$, which gives $\pi_{r} \pi_{s} f=\lambda \cdot\left(x-x^{0}\right) \cdots \lambda \cdot\left(x-x^{r-1}\right) \times$ $\left[\lambda \cdot x^{0}, \ldots, \lambda \cdot x^{s-1}\right] g=\pi_{r} f$ and proves the theorem.

Thus we see that π_{r} is a projection of $C^{r}\left(R^{k}\right)$ onto $P_{r}\left(R^{k}\right)$. The linear functionals which determine this projector are easily determined. In fact, $\pi_{r} f=0$ iff $\int_{\left[x^{0}, \ldots, x^{r}\right]} q(D) f=0$ for all constant coefficient homogeneous differential operators of order r. This is again easily seen by letting $d^{r} f_{(P)}\left(v^{0}, \ldots, v^{r-1}\right)=\operatorname{def}\left(D_{v^{0}} \cdots D_{v^{r-1}} f\right)(P)$, where $d^{r} f_{(x)} \in S^{r} L\left(R^{n}, R\right)$, i.e., it is a symmetric mapping from $\mathbb{R}^{k} \oplus \cdots \oplus_{r \text {-times }} \mathbb{R}^{k}$ into \mathbb{R}, linear in each of its r variables $v_{j} \in \mathbb{R}^{k}$. The partial derivatives $\left(D^{\alpha} f\right)(x)$ of order $|\alpha|=r$ are the coordinates of $d^{r} f_{(x)}$ in the vector space $S^{r} L\left(\mathbb{R}^{r s}, \mathbb{R}\right)$, Therefore $\pi_{r} f(x) \equiv 0$ iff $\int_{\left[x^{0}, \ldots, x^{r}\right]} D^{\alpha} f=0$ for all $|\alpha|=r$. Equivalently, $\pi_{r} f(x) \equiv 0$ iff $\int_{\left[x^{0}, \ldots, x \tau\right]} q(D) f=0$ for all constant coefficient homogeneous differential operators of order r.

For any nested ordering of the points $\left\{x^{0}, \ldots, x^{n}\right\}$ we define

$$
T=\sum_{r=\mathbf{0}}^{n+1} \pi_{r}
$$

Let us first observe that T is independent of the ordering chosen. Again we may see this by observing for $f(x)=g(\lambda \cdot x)$

$$
T f=\sum_{r=0}^{n+1} \lambda \cdot\left(x-x^{0}\right) \cdots \lambda \cdot\left(x-x^{r-1}\right)\left[\lambda \cdot x^{0}, \ldots, \lambda \cdot x^{r-1}\right] g .
$$

We recognize this sum as the Newton form for the polynomial of degree $\leqslant n$ which interpolates g at $\lambda \cdot x^{0}, \ldots, \lambda \cdot x^{n}$. Thus T is independent of the order chosen for the points x^{0}, \ldots, x^{n}.

Theorem 2. T is Kergin interpolation on R^{k}.
Proof. Let J be any subset of $\{0,1, \ldots, n\}$ with $l+1$ integers. We choose an ordering of $\left\{x^{0}, \ldots, x^{n}\right\}$ so that $\left\{x^{j} \mid j \in J\right\}$ is $\left\{x^{0}, \ldots, x^{l}\right\}$. Then $\pi_{l}(T f-f)=$ $\pi_{l} f-\pi_{l} f=0$. Hence, for any homogeneous differential operator q of order l, we have

$$
\int_{\left[x^{0}, \ldots, x^{l}\right]} q(D)(T f-f)=0
$$

