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In this note we give a constructive proof of the existence of the map intro
duced by Kergin (J. Approximation Theory 29 (1980),278-293).

Let sn denote the n-simplex

l(vo,..., vn): Vi ~ 0, t Vi = 11.I 1=0 \

Given vectors xO, ... , xn E Rk, consider the linear functional

f ! = f j(voXO + ... + vnxn) dVI '" dVn .
[",o, .•• ,,,,nj sn

In particular, J[",oJ! = j(XO) , while J[",O,,,,lj! is the line integral of!over the
segment [XO, Xl] and so on. We denote the directional derivative of! in the
direction y E Rk by DlI! Finally, we introduce a map 7Tm : cm(Rk) -->- Pm(Rk),
polynomials of total degree ~m, by setting

7Tm j(X) = J D",_",o ... D",_",m-l!
["'o.... ,"'mj

This map is independent of the order of the points xo, ... , xm • To see this
we letj(x) = g(A . x), g E Cm(RI), AE Rk then

7Tm j(X) = A . (x - XU) ... A • (x - xm) J g<ml,
[.\."'o..... .\."'mJ

which by the Hermite-Gennochi formula equals

A . (x - XU) ... A . (x - Xm)[A . xO, ... , A . xm] g,
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where the expression [xo,..., xm ] g denotes the divided difference of g at

Xo,'''' xm •

Now it is well known that the divided difference is a symmetric function
of its arguments and, since the functions g(A . x), AE Rk, g E Cm(Rl) are dense
in Cm(Rk), the symmetry of7T'mfin its arguments follows.

When we enumerate the maps 7T'0, 7T'1 , ... , 7T'n based on {xo, ... , xn}, we will
always assume they are constructed from nested sets of the form {Xo} c:
{XO, Xl} c: ... c: {XO, ... , xn}, respectively, In this case we have

THEOREM 1.

7T'r7T'S = 0, r#s
r = s.

Proof Again, for f(x) = g(A . x) we have 7Tsf(x) = A . (x - Xo) ... A .
(x - x S

-
l ) [A . xo,... , ,\ . XS

-
l]g. Now, if r > s, 7T'r7T'sf is zero because 'IT"

annihilates polynomials of degree <r. On the other hand, for r < s we see
that 7Tsf(x) = peA . X)[A . xo, ... ,'\ . x S- l ]g, where pet) = (t - A . XO) .
(t - ,\ . XS-l). Thus 7T'r7Tsf(x) = ,\ . (x - XO) ... A . (x - xr-l)[,\ . xO, ,
,\ . x S- l ]g[A' xo,... ,'\ . xr]p = 0, and finally for r = s we have [,\ . xo, ,
,\ . xrJ p = 1, which gives 7T'r7T'sf = ,\ . (x - Xo) ... ,\ . (x - xr-l) X

[,\ . xo, ... ,'\ . X S
- l ] g = 7Tr fand proves the theorem.

Thus we see that 'ITr is a projection of C'"(Rk) onto Pr(Rk). The linear
functionals which determine this projector are easily determined. In fact,
7Trf = °iff f["'o, ....xr] q(D)f = 0 for all constant coefficient homogeneous
differential operators of order r. This is again easily seen by letting
d'i(p)(vo, ... , vr- l ) =def (Dvo ... Dvr-lf)(P), where d1i.m) E S''L(Rn, R),
i.e., it is a symmetric mapping from IRk EB ... EB,..times IRk into IR, linear
in each of its r variables Vj E IRk. The partial derivatives (D'j)(x) of order
I ex I --:- r are the coordinates of d1(",) in the vector space srL(lRk, IR).
Therefore'ITr!(x) - °iff f["'o ....."'r] D'1 = 0 for all I ex I = r. Equivalently,
7T'r f(x) = 0 iff f["'o ..... oor] qeD) f = ° for all constant coefficient homo
geneous differential operators of order r.

For any nested ordering of the points {xo, ..., xn} we define

n+l

T = I. 7Tr ·
r~O

Let us first observe that T is independent of the ordering chosen. Again we
may see this by observing for f(x) = g(A . x)

n+l
Tf = I. ,\ . (x - XO) ... ,\ . (x - Xr-1)[A . xO, ... , A . x r - 1]g.

r=O
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We recognize this sum as the Newton form for the polynomial of degree ~ tl

which interpolates g at i\ . xo, ... , i\ . xn• Thus T is independent of the order
chosen for the points xu,... , xn .

THEOREM 2. T is Kergin. interpolation on Rk.

Proof Let J be any subset of {a, 1,..., n} with 1+ 1 integers. We choose
an ordering of {xO, ... , xn} so that {Xi jj E J} is {xo, ..., XL}. Then 7Tt(Tf - f) =
7Td - 7Td = O. Hence, for any homogeneous differential operator q of
order I, we have

f q(D)(Tf - f) = O.
[",0 ... .,wl]


